Optimization of the Effective Thermal Conductivity of a Composite
نویسندگان
چکیده
Composite materials by definition are a combination of two or more materials. Although the idea of combining two or more components to produce materials with controlled properties has been known and used from time immemorial, modern composites were developed only several decades ago and have found by now intensive application in different fields of engineering (Vasiliev&Morozov, 2001). These materials are used in various design to improve the characteristic of various construction and reduce their weight. The properties of these materials and the problems of obtaining structural elements based upon them have been studied by researchers and engineers all over the world. The fields of composite applications are diversified (Freger et al., 2004). They include structural elements of flying vehicles, their casinos, wings, fuselages, tails and nose cones, jet engine stators, panels form various purposes, main rotors of helicopters, heat – proofing components, construction elements such as panels, racks, shields, banking elements, etc. Any property of a composite which is made of two (or more) materials has the value which is the resultant of a few factors. Obviously, the most important are the values of a certain property of each constituent material. However, one of the factor that also influences the resultant value of a property of a composite as a whole is its geometrical structure. Such resultant properties are commonly called effective properties of a composite. Temperature is the most important of all environmental factors affecting the behaviour of composite materials, mainly because composites are rather sensitive to temperature and have relatively low effective thermal conductivity. For instance, advanced composites for engineering applications are characterized with low density providing high specific strength and stiffness, low thermal conductivity resulting in high heat insulation, and negative thermal expansion coefficient allowing us to construct hybrid composite elements that do not change their dimensions under heating (Vasiliev & Morozov, 2001). Because experimental evaluation of effective properties (e.g. thermal conductivity) of composites is expensive and time consuming, computational methods have been found to provide efficient alternatives for predicting the best parameters of composites, especially those having complex geometries. To achieve a reliable prediction, one needs to work on two aspects: a good description of the structural details of fibrous materials, and an efficient numerical method for the solution of energy equations through the fibrous structures (Wang et al. 2009). The need to determine the thermal conductivity of fibres for design purposes has been the motivation of work (Al-Sulaiman et al., 2006). Authors developed four
منابع مشابه
TOPOLOGY OPTIMIZATION OF COMPOSITE MATERIALS WITH OPTIMAL STIFFNESS AND THERMAL CONDUCTIVITY
This paper presents the bidirectional evolutionary structural optimization (BESO) method for the design of two-phase composite materials with optimal properties of stiffness and thermal conductivity. The composite material is modelled by microstructures in a periodical base cell (PBC). The homogenization method is used to derive the effective bulk modulus and thermal conductivity. BESO procedur...
متن کاملOptimization of Thermal Conductivity of Al2O3 Nanofluid by Using ANN and GRG Methods
Common heat transfer fluids such as water, ethylene glycol, and engine oil have limited heat transfer capabilities due to their low heat transfer properties. Nanofluids are suspensions of nanoparticles in base fluids, a new challenge for thermal sciences provided by nanotechnology. In this study, we are to optimize and report the effects of various parameters such as the ratio of the thermal co...
متن کاملThermal Conductivity of Cu2O-TiO2 Composite -Nanofluid Based on Maxwell model
Nanofluids are colloidal suspension of nanoparticles in a base fluid and have superior thermal properties in comparison to their base fluids. Novel properties of nanofluids are yet to be explored to the highest potential. Currently extensive investigation has been done on thermal conductivity of metallic and oxide...
متن کاملExperimental Investigation of the Alumina/Paraffin Thermal Conductivity Nanofluids with a New Correlated Equation on Effective Thermal Conductivity
Liquid paraffin as a coolant fluid can be applied in electronic devices as a result to its suitable capabilities such as electrical insulating, high heat capacity, chemical and thermal stability, and high boiling point. However, the poor thermal conductivity of paraffin has been confined its thermal cooling application. Addition of high conductor nanoparticles to paraffin can fix this drawback...
متن کاملModeling of Effective Thermal Conductivity and Viscosity of Carbon Structured Nanofluid
This paper was aimed to address the modeling of effective thermal conductivity and viscosity of carbon structured nanofluids. Response surface methodology, D_optimal design (DOD) was employed to assess the main and interactive effects of temperature (T) and weight percentage (wt %) to model effective thermal conductivity and viscosity of multi wall and single wall carbon nanotube, CVD and RGO G...
متن کاملNanotechnology in Wood-based Composite Panels
Wood is a naturally renewable material with both continuous and isolated pore systems. Wood-composite panels have the privilege of offering a homogeneous structure to be used as constructional and structural materials. However, its nature makes it susceptible to biological wood-deteriorating agents, water absorption and thickness swelling, fire, etc. Using nano-materials are very easy in the wo...
متن کامل